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Introduction
This talk in a nutshell
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SWIFT: Strong scaling up to 1024 cores with 60% parallel efficiency.
∼ 40× faster than GADGET.
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Task-based parallelism
The problem with distributed-memory parallelism

Distributed-memory parallelism, e.g. using
MPI, is based on data decomposition,
i.e. each processor is assigned part of the
problem to work on and communicates with
its neighbours.
Surface-to-volume ratio problem: As the
number of cores increases, the amount of
computation per core (volume) decreases
while the relative amount of communication
(surface) increases, eventually dominating
the entire computation.
−→We can always do larger simulations, but
not smaller simulations faster.
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Task-based parallelism
The problem with OpenMP

Shared-memory parallelism using OpenMP,
i.e. annotating an inherently serial code, is
often hampered by frequent
synchronization.
Concurrency problems need to be addressed
explicitly, e.g. using barriers or atomic
instructions.
These overheads associated with these two
problems only get worse as the number of
cores increases.

for ( i = 0 ; i < N ; i++ ) {
    ...
    globalvar += ...    
    }
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Task-based parallelism
Main concepts

Shared-memory parallel programming paradigm in which the computation is
formulated in an implicitly parallelizable way that automatically avoids most
of the problems associated with concurrency and load-balancing.

We first reduce the problem to a set of
inter-dependent tasks.
For each task, we need to know:

I Which tasks it depends on,
I Which tasks it conflicts with.

Each thread then picks up a task which
has no unresolved dependencies or
conflicts and computes it.
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Task-based parallelism
Main advantages

The order in which the tasks are processed is highly dynamic and adapts
automatically to load imbalances.
If the dependencies and conflicts are specified correctly, we do not have to
worry about concurrency at the level of the individual tasks.
−→ No need for expensive explicit locking, synchronization, or atomic
operations.
The same approach can be applied to more unconventional many-core
systems such as GPUs or the Intel Phi.
However, this usually means that we have to completely re-think our entire
computation, e.g. redesign it from scratch to make it task-based.
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Algorithms for SPH
Replacing the algorithms
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Algorithms for SPH
Neighbour-finding with trees

Spatial trees are the most commonly used
approach to neighbour-finding, as the particle
distribution can be irregular.
Neighbour-finding up and down the tree is
simple, but has some problems:

I Worst-case cost inO(N2/3) per particle.
I Low cache efficiency due to scattered memory access.
I Symmetries cannot be exploited, i.e. each particle pair

is found twice.

Parallelization is trivial, but only because
symmetries are not exploited.
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Algorithms for SPH
Hierarchical cell pairs

We start by splitting the simulation domain into
rectangular cells of edge length at least hmax.
All interacting particle pairs are then in either in
the same cell, or in a pair of neighbouring cells.
Finding all neighbours within each cell or
between each pair of cells can be used as a task.
If the particles in the cell or cell pair are
sufficiently small, the task can be split.
Finally, the particles in each cell pair are first
sorted along the cell pair axis to speed-up
neighbour-finding.
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Algorithms for SPH
Task hierarchy

Three main task types: Sorting, self-interactions,
and pair-interactions.
“Ghost” tasks are added to group dependencies
between the density and force tasks of each cell.
Each pair-interaction task depends on the sort
tasks of the cells involved.
Each sorting task depends on the sorting tasks of
its sub-cells (merge-sort).
Tasks on overlapping cells conflict, i.e. they can
not execute concurrently.
Finally, integrator tasks for each cell depend on
the forces having been computed.
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Algorithms for SPH
Dynamic task allocation
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SWIFT tasks

Each core has it’s own task queue and uses work-stealing when empty.
Each core has a preference for tasks involving cells which were used previously
to improve cache re-use.
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Algorithms for SPH
Hybrid shared/distributed-memory parallelism

Domain decomposition
between multi-core nodes,
task-based parallelism
within each node.
Each cell is owned by one
node alone, and tasks
involving foreign nodes are
made dependent on
communication tasks.
Communication tasks
execute dynamically and
asynchronously, overlapping
with computation.
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Algorithms for SPH
Hybrid shared/distributed-memory parallelism
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Algorithms for SPH
Hybrid shared/distributed-memory parallelism

This approach still suffers the same surface-to-volume ratio problem as other
distributed-memory computations, but at a much smaller scale.
−→ Only one MPI-node per physical node.

Future increases in the number of cores per node will not affect
distributed-memory parallel scalability.

The domain decomposition can be computed along the task graph with
standard graph partitioning, e.g. METIS.
−→ Splitting the actual work, and not just the data.
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SWIFT
Replacing the software

Paradigms

Algorithms

Software

Domain Science
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SWIFT
Project goals

Close collaboration with the Institute for Computational Cosmology (ICC) at
Durham University.
−→Make sure we’re building a software that can actually be used.
Main goal is to replace GADGET, the most popular Open-Source cosmological
simulation code.
Massively multi-scale problems, with millions to billions of particles, run on
both desktops and supercomputers.
−→ Include support for GPUs in order to take some of the moderate
simulations off the cluster and onto desktop workstations.
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SWIFT
Main features

15’000 lines of C written by Computer Scientists, using pthreads and MPI,
fully Open-Source.
Explicit vectorization (switched off in the benchmarks here for fairness).
Mixed-precision arithmetic for better performance and vectorization, lower
memory requirements.
Currently porting to CUDA-based GPUs and the Intel Phi.
Easily extensible for different physics, kernel functions, setups, etc. . .
−→ Code within the tasks is not parallel-aware, so no specific know-how
needed to extend it.

Pedro Gonnet: SWIFT: Task-based parallelism, hybrid shared/distributed-memory parallelism, and SPH simulations September 10th, 2013 19/22



SWIFT
Main features

15’000 lines of C written by Computer Scientists, using pthreads and MPI,
fully Open-Source.
Explicit vectorization (switched off in the benchmarks here for fairness).
Mixed-precision arithmetic for better performance and vectorization, lower
memory requirements.
Currently porting to CUDA-based GPUs and the Intel Phi.
Easily extensible for different physics, kernel functions, setups, etc. . .
−→ Code within the tasks is not parallel-aware, so no specific know-how
needed to extend it.

Pedro Gonnet: SWIFT: Task-based parallelism, hybrid shared/distributed-memory parallelism, and SPH simulations September 10th, 2013 19/22



SWIFT
Main features

15’000 lines of C written by Computer Scientists, using pthreads and MPI,
fully Open-Source.
Explicit vectorization (switched off in the benchmarks here for fairness).
Mixed-precision arithmetic for better performance and vectorization, lower
memory requirements.
Currently porting to CUDA-based GPUs and the Intel Phi.
Easily extensible for different physics, kernel functions, setups, etc. . .
−→ Code within the tasks is not parallel-aware, so no specific know-how
needed to extend it.

Pedro Gonnet: SWIFT: Task-based parallelism, hybrid shared/distributed-memory parallelism, and SPH simulations September 10th, 2013 19/22



SWIFT
Main features

15’000 lines of C written by Computer Scientists, using pthreads and MPI,
fully Open-Source.
Explicit vectorization (switched off in the benchmarks here for fairness).
Mixed-precision arithmetic for better performance and vectorization, lower
memory requirements.
Currently porting to CUDA-based GPUs and the Intel Phi.
Easily extensible for different physics, kernel functions, setups, etc. . .
−→ Code within the tasks is not parallel-aware, so no specific know-how
needed to extend it.

Pedro Gonnet: SWIFT: Task-based parallelism, hybrid shared/distributed-memory parallelism, and SPH simulations September 10th, 2013 19/22



SWIFT
Main features

15’000 lines of C written by Computer Scientists, using pthreads and MPI,
fully Open-Source.
Explicit vectorization (switched off in the benchmarks here for fairness).
Mixed-precision arithmetic for better performance and vectorization, lower
memory requirements.
Currently porting to CUDA-based GPUs and the Intel Phi.
Easily extensible for different physics, kernel functions, setups, etc. . .
−→ Code within the tasks is not parallel-aware, so no specific know-how
needed to extend it.

Pedro Gonnet: SWIFT: Task-based parallelism, hybrid shared/distributed-memory parallelism, and SPH simulations September 10th, 2013 19/22



SWIFT
Main features

15’000 lines of C written by Computer Scientists, using pthreads and MPI,
fully Open-Source.
Explicit vectorization (switched off in the benchmarks here for fairness).
Mixed-precision arithmetic for better performance and vectorization, lower
memory requirements.
Currently porting to CUDA-based GPUs and the Intel Phi.
Easily extensible for different physics, kernel functions, setups, etc. . .
−→ Code within the tasks is not parallel-aware, so no specific know-how
needed to extend it.

Pedro Gonnet: SWIFT: Task-based parallelism, hybrid shared/distributed-memory parallelism, and SPH simulations September 10th, 2013 19/22



SWIFT
Main features

15’000 lines of C written by Computer Scientists, using pthreads and MPI,
fully Open-Source.
Explicit vectorization (switched off in the benchmarks here for fairness).
Mixed-precision arithmetic for better performance and vectorization, lower
memory requirements.
Currently porting to CUDA-based GPUs and the Intel Phi.
Easily extensible for different physics, kernel functions, setups, etc. . .
−→ Code within the tasks is not parallel-aware, so no specific know-how
needed to extend it.

Pedro Gonnet: SWIFT: Task-based parallelism, hybrid shared/distributed-memory parallelism, and SPH simulations September 10th, 2013 19/22



SWIFT
Main features

15’000 lines of C written by Computer Scientists, using pthreads and MPI,
fully Open-Source.
Explicit vectorization (switched off in the benchmarks here for fairness).
Mixed-precision arithmetic for better performance and vectorization, lower
memory requirements.
Currently porting to CUDA-based GPUs and the Intel Phi.
Easily extensible for different physics, kernel functions, setups, etc. . .
−→ Code within the tasks is not parallel-aware, so no specific know-how
needed to extend it.

Pedro Gonnet: SWIFT: Task-based parallelism, hybrid shared/distributed-memory parallelism, and SPH simulations September 10th, 2013 19/22



Conclusions
Our contributions

Extended task-based parallelism conceptually to include task conflicts.
−→ Scheduling is trickier, but much more flexible.
Faster and more cache-efficient algorithms for neighbour-finding in
multi-scale particle systems.
−→More than 7× faster than GADGET-2 on a single core.
Fully data-driven, asynchronous, and dynamic hybrid
shared/distributed-memory parallel model.
−→ Good scaling even for small simulations on large numbers of cores.
Domain decomposition based on decomposing the task graph.
−→ Decomposing the actual work, as opposed to just the data.
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Conclusions
Take-home messages

Better algorithms/software leads to almost two orders of magnitude
speedup.

−→ No need for exascale machines?
−→ FLOPs are meaningless if they are being wasted on bad algorithms.
Instead of telling Computer Scientists/Computer designers what they should
be doing, maybe listen to what they have to say about computing.
Paradigms and/or algorithms alone are a dime a dozen.

−→ Close collaborations are needed to produce useful software.

Where do we go from here?

−→More physics, better generalized vectorization, new architectures.
−→ Continue developing the task-based paradigm.
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Conclusions
Thanks

Thank you for your attention!
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