
SWIFT: Using Task-Based Parallelism,

Fully Asynchronous Communication and

Vectorization to achieve Maximal HPC

performance

James S. Willis
Computational Scientist

Institute for Computational Cosmology, Durham University, UK

June 2017

∂

This work is a collaboration between 2 departments at Durham University

(UK):

• The Institute for Computational Cosmology,

• The School of Engineering and Computing Sciences,

with contributions from the astronomy group at the university of Ghent

(Belgium), St-Andrews (UK), Lausanne (Switzerland) and the DiRAC

software team.

This research is partly funded by an Intel IPCC since January 2015.

∂

Overview

• Motivation behind SWIFT

• Problem that we need to solve

• SWIFT’s solution to the problem

∂

What we do and how we do it

• Astronomy / Cosmology simulations of the

formation of the Universe and galaxy

evolution.

• EAGLE project1: 48 days of computing on

4096 cores. >500 TBytes of data products

(post-processed data is public!). Most cited

astronomy paper of 2015 (out of >26000).

• Simulations of gravity and hydrodynamic

forces
One simulated galaxy out of the

EAGLE virtual universe.

1) www.eaglesim.org

http://www.eaglesim.org/

∂

SPH: The problem to solve

For a set of N (>109) particles, we want to exchange hydrodynamical

forces between all neighbouring particles within a given (time and space

variable) search radius.

∂

SPH: Challenges

• Particles are unstructured in space, large density variations.

• Particles will move and their neighbour lists will evolve over time

• Interactions between particles are computationally cheap to perform

(low flop/byte ratio)

∂

SPH: The SWIFT solution

We need to make the problem regular

and predictable for load balancing:

• Neighbour search is performed via the

use of an adaptive grid constructed

recursively until we get ~500 particles per

cell

• Cell spatial size matches search radius

• Particles only interact with partners in their

own cell or one of the 26 neighbouring

cells

∂

Task Based Parallelism

• Decompose the problem into a set of

inter-dependent tasks which form a task

graph

• Each task has a set of dependencies

and conflicts

• Each thread then executes a task that

has no unresolved dependencies or

conflicts

∂

SPH: The SWIFT solution
for(int ci=0; ci < nr_cells; ++ci) { // loop over all cells

for(int cj=0; cj < 27; ++cj) { // loop over all 27 cells neighbouring cell ci

const int count_i = cells[ci].count;

const int count_j = cells[cj].count;

for(int i = 0; i < count_i; ++i) {

for(int j = 0; j < count_j; ++j) {

struct part *pi = &parts[i];

struct part *pj = &parts[j];

INTERACT(pi, pj); // symmetric interaction

} } } }

∂

SPH: The SWIFT solution
for(int ci=0; ci < nr_cells; ++ci) { // loop over all cells

for(int cj=0; cj < 27; ++cj) { // loop over all 27 cells neighbouring cell ci

const int count_i = cells[ci].count;

const int count_j = cells[cj].count;

for(int i = 0; i < count_i; ++i) {

for(int j = 0; j < count_j; ++j) {

struct part *pi = &parts[i];

struct part *pj = &parts[j];

INTERACT(pi, pj); // symmetric interaction

} } } }

Vectorization

Threads + MPI

∂

Single node parallel performance

Task graph for one time-step. Colours correspond to different types of task. Almost perfect load-balancing is achieved on 32
cores.

∂

Scaling results: SuperMUC

System: x86 architecture - 2 Intel Sandy Bridge Xeon E5-2680 8C at 2.7 GHz with 32 GByteof RAM per node.

∂

SIMD strategy

Example of a task interacting all particles

within one cell.

Thanks to our task-based parallel framework:

• No need to worry about MPI

• No need to worry about threading or race

conditions

• Full problem is held in the L2 cache

∂

Step 1: Form local cache of

particles

∂

Step 2: Find pairs and pack them

into a 2nd cache

∂

Step 3: Process all pairs in the 2nd

cache

∂

Vectorization results
CFLAGS Speed-up over naïve

brute force
Speed-up over best

serial version

-O3 -xAVX 2.93x 1.94x

-O3 -xCORE-AVX2 3.64x 2.74x

-O3-xMIC-AVX512 4.37x 2.80x

Better than the factor of 2x obtained from the auto-vectorizer

In the scalar case, there is a faster algorithm with the comparison shown here for

fairness

∂

Formation of a galaxy on a KNL

∂

Conclusions

• Completely open-source software including all the examples and

scripts

• ~30,000 lines of C without fancy language extensions

• Good parallel performance up to 32,000+ cores thanks to:

Á Task-based parallelism

Á Improved data locality

Á Asynchronous MPI communication

Á SIMD strategy

∂

Questions

• Thank you for your attention

• Any questions?

• The code is free to download at: http://icc.dur.ac.uk/swift/

