SWIFT: Using Task-Based Parallelism,
Fully Asynchronous Communication and
Vectorization to achieve Maximal HPC

performance

James S. Willis

Computational Scientist
Institute for Computational Cosmology, Durham University, UK

P
N

[
P Durham

University

This work is a collaboration between 2 departments at Durham University
(UK):

* The Institute for Computational Cosmology,
» The School of Engineering and Computing Sciences,

with contributions from the astronomy group at the university of Ghent
(Belgium), St-Andrews (UK), Lausanne (Switzerland) and the DIRAC
software team.

This research is partly funded by an Intel IPCC since January 2015.

2
N

[
P Durham

University

Overview

 Motivation behind SWIFT
 Problem that we need to solve
« SWIFT’s solution to the problem

AN B
9V Durham

University

What we do and how we do it

« Astronomy / Cosmology simulations of the
formation of the Universe and galaxy
evolution.

EAGLE project!: 48 days of computing on
4096 cores. >500 TBytes of data products
(post-processed data is public!). Most cited
astronomy paper of 2015 (out of >26000).

Simulations of gravity and hydrodynamic
forces

One simulated galaxy out of the
EAGLE virtual universe.
R
9V Durham

University 1) www.eaglesim.org

http://www.eaglesim.org/

SPH: The problem to solve

For a set of N (>10°) particles, we want to exchange hydrodynamical
forces between all neighbouring particles within a given (time and space
variable) search radius.

P
N

[
¥ Durhan®

University

SPH: Challenges

Particles are unstructured in space, large density variations.
Particles will move and their neighbour lists will evolve over time

Interactions between particles are computationally cheap to perform
(low flop/byte ratio)

2
N

[
P Durham

University

SPH: The SWIFT solution

We need to make the problem regular
and predictable for load balancing:

* Neighbour search is performed via the
use of an adaptive grid constructed
recursively until we get ~500 particles per
cell

Cell spatial size matches search radius

Particles only interact with partners in their
own cell or one of the 26 neighbouring
cells

o e e | o o e e o e e e e e e

2
N

[
P Durham

University

Task Based Parallelism

integrator

» Decompose the problem into a set of
inter-dependent tasks which form a task
graph
Each task has a set of dependencies
and conflicts

Each thread then executes a task that
has no unresolved dependencies or
conflicts

density

2
N

Lo
¥ Durham | = Dependency

University = = = Conflict

SPH: The SWIFT solution

for(int ci=0; ci < nr_cells; ++ci) {
for(int cj=0; cj < 27; ++cj) {

for(int 1 = 0; 1 < count_i1; ++i1) {
for(int j = 0; j < count_j; ++j) {

INTERACT(pi, pj):

+r i}

AN

9V Durham

University

SPH: The SWIFT solution mreads + me

for(int ci=0; ci < nr_cells; ++ci) {
for(int cj=0; cj < 27; ++cj) {

Vectorization

for(int 1 = 0; 1 < count_i1; ++i1) {
for(int j = 0; j < count_j; ++j) {

INTERACT(pi, pj):
Fr} 3}
N

¥V Durham

University

Single node parallel performance

SWIFT tasks

50 100 150 200 250 300 350
time (ms)

Task graph for one timstep. Colours correspond to different types of task. Almost perfect-tmdncing is achieved on 32
ZA B cores.
¥V Durham

University

Scaling results: SuperMUC

SWIFT Strong scaling on SuperMUC with 512M particles from 16 to 2048 nodes and 16 threads per node

2000

)

16384 cores

o
o0

8192 cores

w
Q
e
o]
o
R=l
Lo
(&}

512 cores ‘
1024 cores
2048 cores
4096 cores

32768 cores

o
e

Parallel Efficiency
=)
(=)}

o
[}

0 I 1 1 1 00 . R 2 — |2 . . M | 7
0 500 1000 1500 2000 10! 10 10-
Nodes Nodes

]| System: x86 architecture2 Intel Sandy Bridge Xeon-E680 8C at 2.7 GHz with &Byteof RAM per node.

9V Durham

University

SIMD strategy

Example of a task interacting all particles
within one cell.

Thanks to our task-based parallel framework:
* No need to worry about MPI

* No need to worry about threading or race
conditions

Full problem is held in the L2 cache

2
N

[
P Durham

University

Step 1: Form local cache of

particles

Particles XY,
(A0S)

Particles x:
(SoA)
V.

Z.

Step 2: Find pairs and pack them
into a 2™ cache

Vector mask:
(r* < h?)
Vector rz:

Secondary r2:
Cache _
(SoA) M;
V:
) |
¥ Durham dx:

University

P
N

Step 3: Process all pairs in the 2™
(:El(:llfa'vectuh densitySum;

density = setzero();

for (pjd = @, pjd < icount; pjd+=VEC SIZE) {
INTERACT(&c2 r2[pjd], &c2 dx[pjd], &c2 dy[pjd],
&c2 dz[pjd], &c2 m[pjd], &c2 v[pjd],
&densitysSum);

VEC_HADD(densitySum,pi);

23
A

[
P Durham

University

Vectorization results

CFLAGS Speedup over naive Speedup over best
brute force serial version

-O3-xAVX 2.93x 1.94x

-O3-xCOREAVX2 3.64x 2.74x

-O3-xMIGAVX512 4.37X 2.80x

Better than the factor of 2x obtained from the auto-vectorizer

In the scalar case, there is a faster algorithm with the comparison shown here for

Za P fairness
9V Durham

University

Formation of a galaxy on a KNL

Conclusions

Completely open-source software including all the examples and
scripts

~30,000 lines of C without fancy language extensions

Good parallel performance up to 32,000+ cores thanks to:
A Task-based parallelism

A Improved data locality

A Asynchronous MPI communication

A SIMD strategy

AN B
9V Durham

University

Questions

« Thank you for your attention
* Any questions?
 The code is free to download at: http://icc.dur.ac.uk/swift/

AN B
9V Durham

University

