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This work is a collaboration between 2 departments at Durham University
(UK):

* The Institute for Computational Cosmology,
» The School of Engineering and Computing Sciences,

with contributions from the astronomy group at the university of Ghent
(Belgium), St-Andrews (UK), Lausanne (Switzerland) and the DIRAC
software team.

This research is partly funded by an Intel IPCC since January 2015.
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Overview

 Motivation behind SWIFT
 Problem that we need to solve
«  SWIFT’s solution to the problem
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What we do and how we do it

« Astronomy / Cosmology simulations of the
formation of the Universe and galaxy
evolution.

EAGLE project!: 48 days of computing on
4096 cores. >500 TBytes of data products
(post-processed data is public!). Most cited
astronomy paper of 2015 (out of >26000).

Simulations of gravity and hydrodynamic
forces

One simulated galaxy out of the
EAGLE virtual universe.
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http://www.eaglesim.org/

SPH: The problem to solve

For a set of N (>10°) particles, we want to exchange hydrodynamical
forces between all neighbouring particles within a given (time and space
variable) search radius.
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SPH: Challenges

Particles are unstructured in space, large density variations.
Particles will move and their neighbour lists will evolve over time

Interactions between particles are computationally cheap to perform
(low flop/byte ratio)
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SPH: The SWIFT solution

We need to make the problem regular
and predictable for load balancing:

* Neighbour search is performed via the
use of an adaptive grid constructed
recursively until we get ~500 particles per
cell

Cell spatial size matches search radius

Particles only interact with partners in their
own cell or one of the 26 neighbouring
cells
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Task Based Parallelism

integrator

» Decompose the problem into a set of
inter-dependent tasks which form a task
graph
Each task has a set of dependencies
and conflicts

Each thread then executes a task that
has no unresolved dependencies or
conflicts
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SPH: The SWIFT solution

for(int ci=0; ci < nr_cells; ++ci) {
for(int cj=0; cj < 27; ++cj) {

for(int 1 = 0; 1 < count_i1; ++i1) {
for(int j = 0; j < count_j; ++j) {

INTERACT(pi, pj):

+r i}
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SPH: The SWIFT solution mreads + me

for(int ci=0; ci < nr_cells; ++ci) {
for(int cj=0; cj < 27; ++cj) {

Vectorization

for(int 1 = 0; 1 < count_i1; ++i1) {
for(int j = 0; j < count_j; ++j) {

INTERACT(pi, pj):
Fr} 3}
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Single node parallel performance

SWIFT tasks

50 100 150 200 250 300 350
time (ms)

Task graph for one timstep. Colours correspond to different types of task. Almost perfect-tmdncing is achieved on 32
ZA B cores.
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Scaling results: SuperMUC

SWIFT Strong scaling on SuperMUC with 512M particles from 16 to 2048 nodes and 16 threads per node
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9V Durham

University




SIMD strategy

Example of a task interacting all particles
within one cell.

Thanks to our task-based parallel framework:
* No need to worry about MPI

* No need to worry about threading or race
conditions

Full problem is held in the L2 cache
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Step 1: Form local cache of

particles

Particles XY,
(A0S)

Particles x:
(SoA)
V.
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Step 2: Find pairs and pack them
into a 2™ cache

Vector mask:
(r* < h?)
Vector rz:

Secondary r2:
Cache _
(SoA) M;
V:
) |
¥ Durham dx:
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Step 3: Process all pairs in the 2™
(:El(:llfa'vectuh densitySum;

density = setzero();

for ( pjd = @, pjd < icount; pjd+=VEC SIZE) {
INTERACT(&c2 r2[pjd], &c2 dx[pjd], &c2 dy[pjd],
&c2 dz[pjd], &c2 m[pjd], &c2 v[pjd],
&densitysSum);

VEC_HADD(densitySum,pi);
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Vectorization results

CFLAGS Speedup over naive Speedup over best
brute force serial version

-O3-xAVX 2.93x 1.94x

-O3-xCOREAVX2 3.64x 2.74x

-O3-xMIGAVX512 4.37X 2.80x

Better than the factor of 2x obtained from the auto-vectorizer

In the scalar case, there is a faster algorithm with the comparison shown here for
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Formation of a galaxy on a KNL




Conclusions

Completely open-source software including all the examples and
scripts

~30,000 lines of C without fancy language extensions

Good parallel performance up to 32,000+ cores thanks to:
A Task-based parallelism

A Improved data locality

A Asynchronous MPI communication

A SIMD strategy
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Questions

« Thank you for your attention
* Any questions?
 The code is free to download at: http://icc.dur.ac.uk/swift/
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