
ParCo 2017

An Efficient SIMD Implementation 
of Pseudo-Verlet Lists for 
Neighbour Interactions in 

Particle-Based Codes 
James S. Willis, Matthieu Schaller, Pedro Gonnet, Richard G. Bower & 

Peter W. Draper
Durham University, ICC
September 14th 2017

1



ParCo 2017

Team

2

This work is a collaboration between two departments at Durham University 
(UK):
• The Institute for Computational Cosmology,
• The School of Engineering and Computing Sciences,

with contributions from the astronomy group at the University of St. 
Andrews, University of Dublin, ETH Lausanne, the DiRAC software team and 
the Hartree Centre.
• This research is fully funded by an IPCC.



ParCo 2017

Overview

3

• Problem to solve
• Solution
- Pseudo Verlet list
- Particle sorting

• SIMD vectorisation strategy for particle based codes (MD, SPH, etc.)
- Particle caches AoS to SoA

• Strategy applied to SWIFT
• Performance results
• Conclusions



ParCo 2017

Motivation

4

• Create simulations of the formation and evolution of the Universe
• Update 109 particles using hydrodynamical and gravitational forces
• Simulate physical processes:
- Cooling and heating of the gas due to the presence of stars and other 

emission
- Formation of stars in cold and dense regions
- Explosion of supernovae with injection of their 

energy in the surrounding gas
- Formation of supermassive black holes



ParCo 2017

Motivation

5

• Dwarf galaxy simulation using SWIFT

http://www.youtube.com/watch?v=KdPXCQstaM8


ParCo 2017

• We update each particle using SPH (Smoothed-Particle Hydrodynamics)
• Each particle interacts with its neighbours that are within a cut-off radius, 

h
• h varies depending on the particle density of the region
• Interaction cheap to compute

Problem

6



ParCo 2017

Problem
• The particles are divided up into cells of edge h

max
, where h

max 
is the 

maximum particle cut-off radius in the simulation
• Computing the interactions of particles in two neighbouring cells would 

require a lot of unnecessary distance calculations
• The majority of particles will not be within range of each other

7



ParCo 2017

Naive Solution
Brute Force
• Perform a double for loop over all particles
• Interact particles that are within range of each other, r < h
• Trivial to vectorise

8



ParCo 2017

Smart Solution
Particle Sorting
• Place particles into a pseudo-Verlet list:
- Project particles onto the axis joining the center of the two cells
- Sort the particles on the axis based upon their position on the axis
- Sorting performed using a merge sort
- Only occurs when the particles have moved by a certain distance

• Reduces the number of candidates
• These particles are still tested so that they are within the 3D distance

9



ParCo 2017

Smart Solution

10



ParCo 2017

Smart Solution

11



ParCo 2017

SIMD Optimisations

12



ParCo 2017

SIMD Optimisations

• Use local particle cache (AoS -> SoA)
• Only read particles that interact into cache.
• Calculate all interactions on a particle and store results in a set of 

intermediate vectors
• Perform horizontal add on intermediate vectors and update the particles 

with the result
• Pad caches to prevent remainders and mask out the result

13



ParCo 2017

Local Particle Cache

• The particles are stored in a global array of structs (AoS)
• Causes strided memory access when vectors are loaded ​
• We can improve performance by placing the required particle properties 

into a structure of arrays (SoA)

IXPUG Annual Spring Conference 2017

14



ParCo 2017

Populate Local Cache

• In a uniform distribution of particles each cell pair orientation has a 
different number of interactions

• There are three cell pair orientations: corner, edge and face
• Number of interactions: corner < edge < face

• We want to reduce the cache overhead by only reading particles that are 
within range of each other

• Allows edge interactions to speedup instead of slowing down

15



ParCo 2017

Populate Local Cache

16



ParCo 2017

Populate Local Cache

17



ParCo 2017

Populate Local Cache

18



ParCo 2017

Populate Local Cache

19



ParCo 2017

Limit Loop Bounds

• For each particle we loop over every candidate in the neighbouring cell
• Even though most will be out of range as we move further from the 

interface between the two cells
• We want to reduce the number of distance calculations even further

• Form array of maximum indices into neighbouring cell
• Use array to limit the number of particles looped over in the neighbouring 

cell

20



ParCo 2017

Limit Loop Bounds

21



ParCo 2017

Limit Loop Bounds

22



ParCo 2017

Limit Loop Bounds

23



ParCo 2017

Limit Loop Bounds

24



ParCo 2017

Limit Loop Bounds

25



ParCo 2017

Limit Loop Bounds

26



ParCo 2017

Calculating Interactions

• Particle density interactions are calculated using:

• W is the weight function which is a low order polynomial
SIMD Implementation
• Use intermediate vectors to accumulate sum of particle updates in 

interaction function
• Perform horizontal add on these vectors and update the particles
• Decreases the amount of writes to memory

27



ParCo 2017

Calculating Interactions

IXPUG Annual Spring Conference 2017

28

 



ParCo 2017

Calculating Interactions

29

 



ParCo 2017

Padding Local Cache

• Pad vectors to remove the serial remainders and mask the result

30



ParCo 2017

Performance Results

• Vectorisation performance was measured using AVX, AVX2 and AVX-512 
instruction sets on the following hardware:

- Intel Xeon CPU E5-4640 @ 2.4GHz (Sandy Bridge)

- Intel Xeon CPU E5-2650 @ 2.2GHz (Broadwell)

- Intel Xeon Phi CPU 7210 @ 1.3GHz (Knights Landing)
- Configured in Flat-Quadrant mode

• Intel Compiler 17.0.2

31



ParCo 2017

Cell-pair 
Orientation

Pseudo-Verlet List 
Scalar Time [ms]

Pseudo-Verlet List 
SIMD Time [ms]

Speed-up

Corner
0.00035 0.00070 0.49x

Edge
0.0052 0.0035 1.48x

Face
0.082 0.034 2.41x

Performance Results

32



ParCo 2017

Cell-pair 
Orientation

Pseudo-Verlet List 
Scalar Time [ms]

Pseudo-Verlet List 
SIMD Time [ms]

Speed-up

Corner
0.00035 0.00070 0.49x

Edge
0.0052 0.0035 1.48x

Face
0.082 0.034 2.41x

Performance Results

33



ParCo 2017

CFLAGS Speed-up of raw 
particle 
interactions over 
serial version

Speed-up over 
serial 
pseudo-Verlet list

-O3 -xAVX 
-no-prec-sqrt 
-fp-model fast=2 5.66x 2.24x

-O3 -xCORE-AVX2
-no-prec-sqrt 
-fp-model fast=2 6.77x 2.43x

-O3 -xMIC-AVX512
-no-prec-sqrt 
-fp-model fast=2 21.30x 4.07x

Performance Results

34



ParCo 2017

CFLAGS Speed-up of raw 
particle 
interactions over 
serial version

Speed-up over 
serial 
pseudo-Verlet list

-O3 -xAVX 
-no-prec-sqrt 
-fp-model fast=2 5.66x 2.24x

-O3 -xCORE-AVX2
-no-prec-sqrt 
-fp-model fast=2 6.77x 2.43x

-O3 -xMIC-AVX512
-no-prec-sqrt 
-fp-model fast=2 21.30x 4.07x

Performance Results

35



ParCo 2017

CFLAGS Speed-up of raw 
particle 
interactions over 
serial version

Speed-up over 
serial 
pseudo-Verlet list

-O3 -xAVX 
-no-prec-sqrt 
-fp-model fast=2 5.66x 2.24x

-O3 -xCORE-AVX2
-no-prec-sqrt 
-fp-model fast=2 6.77x 2.43x

-O3 -xMIC-AVX512
-no-prec-sqrt 
-fp-model fast=2 21.30x 4.07x

Performance Results

36



ParCo 2017

Performance Results

37

• Compare our improvements against the naive implementation of the 
algorithm

• Assuming the naive algorithm could achieve maximum speed due to SIMD 
vectorisation



ParCo 2017

CFLAGS Naive Solution 
Scalar Time [ms]

Naive Solution 
SIMD Time [ms] 
(Max SIMD 
Speedup)

Pseudo-Verlet List 
SIMD Time [ms]

-O3 -xAVX 
-no-prec-sqrt 
-fp-model fast=2 24.49 3.06 0.25

-O3 -xCORE-AVX2
-no-prec-sqrt 
-fp-model fast=2 24.88 3.11 0.20

-O3 -xMIC-AVX512
-no-prec-sqrt 
-fp-model fast=2 70.88 4.43 0.49

Performance Results

38



ParCo 2017

Conclusions and Insights

▪ Increased performance of algorithm using a pseudo Verlet list and particle 
sorting

▪ Implemented a local particle cache (SoA)
▪ Implemented a vectorisation strategy
- Only read particles into cache that interact
- Calculate all interactions on a particle and store results in a set of 

intermediate vectors
- Perform horizontal add on intermediate vectors and update the particles 

with the result
- Pad caches to prevent remainders and mask out the result

▪ Obtained speed-up on AVX, AVX2 and AVX512 instruction sets

39



ParCo 2017

Future Work

■ Reduce the impact of overheads even further
■ Improve vectorisation efficiency to obtain speedup closer to 8x and 16x for 

AVX and AVX-512 instruction sets

40



ParCo 2017

Questions

■ Thank you for your attention
■ Any questions?
■ Website: www.icc.dur.ac.uk/swift/

41



ParCo 2017

Calculating Interactions

IXPUG Annual Spring Conference 2017

42


